Usando materiais 2D, os pesquisadores construíram qubits supercondutores que são uma fração do tamanho dos qubits anteriores, abrindo caminho para computadores quânticos menores.
Para reduzir os qubits enquanto mantém seu desempenho, o campo precisa de uma nova maneira de construir os capacitores que armazenam a energia que “alimenta” os qubits. Em colaboração com a Raytheon BBN Technologies, o laboratório do professor Wang Fong-Jen James Hone na Columbia Engineering demonstrou recentemente um capacitor qubit supercondutor construído com materiais 2D, tornando-o uma fração do tamanho dos capacitores anteriores.
Para construir chips qubit anteriormente, os engenheiros tiveram que usar capacitores planares, que colocam as placas carregadas necessárias lado a lado. Empilhar essas placas economizaria espaço, mas os metais usados em capacitores paralelos convencionais interferem no armazenamento de informações do qubit. No trabalho atual, publicado em 18 de novembro na NanoLetras, os alunos de doutorado de Hone Abhinandan Antony e Anjaly Rajendra colocaram uma camada isolante de nitreto de boro entre duas placas carregadas de disseleneto de nióbio supercondutor. Essas camadas são cada uma apenas uma única[{” attribute=””>atom thick and held together by van der Waals forces, the weak interaction between electrons. The team then combined their capacitors with aluminum circuits to create a chip containing two qubits with an area of 109 square micrometers and just 35 nanometers thick—that’s 1,000 times smaller than chips produced under conventional approaches.
When they cooled their qubit chip down to just above absolute zero, the qubits found the same wavelength. The team also observed key characteristics that showed that the two qubits were becoming entangled and acting as a single unit, a phenomenon known as quantum coherence; that would mean the qubit’s quantum state could be manipulated and read out via electrical pulses, said Hone. The coherence time was short—a little over one microsecond, compared to about 10 microseconds for a conventionally built coplanar capacitor, but this is only a first step in exploring the use of 2D materials in this area, he said.

Optical micrograph of the team’s superconducting qubit chip that’s 1,000 times smaller than others made with conventional fabrication techniques. Credit: Abhinandan Antony et al./Columbia Engineering
“We now know that 2D materials may hold the key to making quantum computers possible,” Hone said. “It is still very early days, but findings like these will spur researchers worldwide to consider novel applications of 2D materials. We hope to see a lot more work in this direction going forward.”
Reference: “Miniaturizing Transmon Qubits Using van der Waals Materials” by Abhinandan Antony, Martin V. Gustafsson, Guilhem J. Ribeill, Matthew Ware, Anjaly Rajendran, Luke C. G. Govia, Thomas A. Ohki, Takashi Taniguchi, Kenji Watanabe, James Hone and Kin Chung Fong, 18 November 2021, NanoLetters.
DOI: 10.1021/acs.nanolett.1c04160
